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Abstract. The stable marriage problem with ties (SMT) is a variant of
the stable marriage problem in which people are permitted to express ties
in their preference lists. In this paper, an algorithm based on bidirectional
searching is presented for trying to find strongly egalitarian and sex-equal
stable matchings. We indicate that the use of two simultaneous searches
in the algorithm not only accelerate the finding of solutions but also is
appropriate for the strong stability criterion of SMT. The algorithm is
implemented and tested for large datasets. Experimental results show
that our algorithm is significant.
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1 Introduction

An instance I of the classical stable marriage problem (SMP) of size n involves
n men and n women. Each man ranks n women to give himself a preference list,
and similarly each woman ranks n man to also give herself a preference list. A
matching M in I is an one-one correspondence between the men and women
of I. For a pair of man and woman (m,w) ∈ M , we denote by M(m) and M(w)
the partner of m and w in M , respectively, i.e., w = M(m) and m = M(w). A
pair (m,w) is said to be blocking pair for M , if m and w are not partners and
m (w, respectively) prefers w (m, respectively) to M(m) (M(w), respectively).
A matching that admits no blocking pair is said to be stable, otherwise it is
unstable. Let us denote by pm(w) (pw(m), respectively) the position of w (m,
respectively) in m’s (w’s, respectively) preference list. It was shown by Gale
and Shapley that every instance of SMP admits at least a stable matching [1],
and the matching can be found in O(n2). A stable matching found by Gale and
Shapley’s algorithm is man- or woman-optimal.
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For a stable matching M , we define the man cost, denoted by sm(M), and
the woman cost, denoted by sw(M), as follows:

sm(M) =
∑

(m,w)∈M

pm(w),

sw(M) =
∑

(m,w)∈M

pw(m).

We also define the egalitarian and sex-equal costs by:

c(M) = sm(M) + sw(M), (1)
d(M) = |sm(M) − sw(M)|. (2)

Let M be the set of all stable matchings of an instance I of the SMP. For
M ∈ M, M is called to be egalitarian (sex-equal, respectively) if c(M) (d(M),
respectively) is minimum among all stable matchings in M [14]. The fairness is
emphasized for the egalitarian and sex-equal matchings in which we attempt to
obtain the balance of preferences between men and women in a stable matching.
Several approaches were proposed for finding egalitarian and sex-equal match-
ing such as genetic algorithm [14], ant colony system [15], and approximation
algorithm [9].

A generalization of SMP called the stable marriage problem with ties (SMT)
arises when people are permitted to express ties in their preference lists. Par-
ticularly, each person does not need to rank members of the opposite sex in
strict order. Some of those involved might be indifference among members of the
opposite sex. When once the ties is allowed in the preference lists, stability of
a matching can be defined in three possible forms [6]. In particular, a matching
M is weakly stable if there is no couple (x, y), each of whom strictly prefers the
other to his/her partner in M . Also, a matching M is strongly stable if there is
no couple (x, y) such that x strictly prefers y to his/her partner in M , and y
either strictly prefers x to his/her partner in M or is indifferent between them.
Finally, a matching M is super-stable if there is no couple (x, y), each of whom
either strictly prefers the other to his/her partner in M or is indifferent between
them. We note that a person p strictly prefers a person q in a preference list, p
precedes q in the list.

The SMT problem has been received many attentions of researchers (exam-
ples can be found in [3,5,6,8]). In order to deal with the problem of large size,
a useful approach based on local searching was studied. In 2013, Gelain et al.
proposed a local search method to speed up the process of finding solutions [2].
Munera et al. have also addressed the problem using local search approach, based
on Adaptive Search [13]. However, these methods only find a stable matching of
a given instance.

In this paper, we present a local search algorithm to address SMT for strongly
egalitarian or sex-equal stable matchings. Based on the distributive lattice struc-
ture of strongly stable matchings in an SMT instance, a search scheme consisting
of two simultaneous local searches is performed in both man and woman points of
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view. In each locally searching step, an adapted breakmarriage operation is used
to determine the neighbor set of a strongly stable matching. By the dominance
relation which is maintained by the breakmarriage operation, a stop condition is
established to terminate the algorithm. The algorithm is implemented and tested
for large datasets. Experimental results are given to show the time performance
of our algorithm.

The rest of the paper is organized as follows. Section 2 recalls the distributive
lattice structure formed by the set of strongly stable matchings, which is the
essential structure for establishing the searching scheme in our algorithm. The
proposed algorithm is given in Sect. 3. Section 4 is devoted to implementation
and testing for large datasets. Finally, some concluding remarks are given in
Sect. 5.

2 Preliminaries

The lattice structure of stable matchings plays an important role for solving some
problems associated with SMP, such as finding all stable pairs, all stable match-
ings [4], and also an egalitarian stable matching [7] of a given instance of SMP.
Utilizing the dominance properties in the lattice structure, a number of local
search algorithms have been proposed for finding optimally stable matchings,
i.e. sex-equal and egalitarian, of SMPs [16,17].

Since the preference condition is not symmetric in the definition of strongly
stability, the distributive lattice of strongly stable matchings is thus not obvi-
ously derived. Fortunately, Manlove in [11] indicated that under a equivalence
relation defined on the set of strongly stable matchings for a given SMT instance,
the set of equivalence classes forms a distributive lattice under a dominance rela-
tion.

Let M and M ′ be matchings of a given SMT instance I, and q be a person
in I. We say that q strictly prefers M to M ′ (is indifferent between M and M ′,
respectively) if q strictly prefers pM (q) to pM ′(q) (is indifferent between pM (q)
to pM ′(q), respectively).

Definition 1 (Equivalence relation [11]). Given a SMT instance I, let M
be the set of strongly stable matchings in I. An equivalence relation, denoted by
∼, is defined on M as follows: for any M,M ′ ∈ M, M ∼ M ′ if and only if each
man is indifferent between M and M ′.

A dominance relation is defined on the set of stable matchings in an SMP
instance (see [4]). Such a relation on strongly stable matchings can be defined as
follows. Let I be an SMT instance and M be the set of strongly stable matchings
in I. Let M,M ′ ∈ M. M dominates M ′, written M � M ′,if each man strictly
prefers M to M ′, or is different between them [11]. We denote by C the set of
equivalence classes of M under ∼, and by [M ] the equivalence class containing
M , for M ∈ M. A partial order, denoted by �∗, is defined on equivalence classes
as follows.
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Definition 2 ([11]). For two equivalence classess [M ], [M ′] ∈ C, [M ] �∗ [M ′]
if and only if M � M ′.

The distributive lattice structure of strongly stable matchings for an SMT
instance is given in the following, which helps us to develop a searching for
optimal matchings (described in Sect. 3).

Theorem 1 (Distributive lattice [11]). Let I be an SMT instance, M be the
set of strongly stable matchings in I. Let C be the set of equivalence classes of
M under ∼, and �∗ be the dominance partial order on C. Then (C,�∗) forms
a finite distributive lattice.

3 Searching Algorithm

Our scheme is to locally search, among neighborhoods of a strongly stable match-
ings, a better matching with respect to an optimal criterion, i.e. egalitarian or
sex-equal. The selection of a better matching is performed due to the domi-
nance relation. The distributive lattice of strongly stable matchings for an SMT
instance (as indicated in Theorem 1), is the essential structure for such a search.

Given an SMT instance, the existence of a strongly stable matching can be
determined and such a matching can be found in O(n4) [6,10]. If a strongly
matching exists, the search starts at the matching and then iteratively performs
the followings: (i) determining a set of neighbors of the matching, (ii) then
selecting a better matching among them due to an optimal criterion. The search
terminates when meeting a top condition (mentioned in the end of this section).
Task (i) can be performed by using a modification of the breakmarriage operation
as below.

Breakmarriage for Strongly Stable Matchings

The concept of breakmarriage operation was introduced by McVitie and Wil-
son [12]. Let M be a matching in a given SMP instance and let (m,w) be a pair
in M . The operation breaks the marriage of m and w. Starting with m propos-
ing the woman following w in his preference list, it then performs a sequence of
proposals, acceptances, and rejections as given by the Gale and Shapley’s Algo-
rithm [1]. The operation terminates if w is engaged to m′ she prefers to m or
some man is rejected by all women. If the operation terminates with the former
case, i.e. all men are engaged, we obtain a new matching, denoted by M ′. It was
shown in [12] that M ′ is stable too. Furthermore, M ′ dominates M .

Unlike in SMP, the acceptance and rejection of a woman w in the sequence
of proposals, acceptances, and rejections are different for strongly stability in
SMT instances. Namely, by the definition of strongly stability, w can accept a
man she prefers to her current partner or the man and her current partner are
indifferent. Let (m,w) be a pair in strongly stable matching in an SMT instance.
The breakmarriage operation should be modified as follows. Let us consider the
situation when w is received a proposal from some man:
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(a) If the man is indifferent between his partner and w, w accepts the man only
if she strictly prefers the man to m.

(b) Otherwise, w accepts the man if she strictly prefers the man to m or is
indifferent between them.

Proposition 1. Let M be a strongly stable matching in a given SMT instance.
If a matching M ′ is obtained by performing the breakmarriage operation due to
(a) and (b), M ′ is also strongly stable.

Proof. Regarding the stability, we use the similar argument in the proof of The-
orem 3 in [12]. In particular, all pairs in M ′ that keep the same in M , are still
stable. The remaining pairs in M ′ are generated in which a man gets a better
partner and a woman gets a worse partner, or he/she is indifferent between the
current partner and new one. In the meanwhile, by the rules (a) and (b), the
strongly stability is maintained.

The Algorithm

We now describe the algorithm. Let M be a strongly stable matching in a given
SMT instance. Procedure FindNext(M) determines a better matching for the
search. It computes the set of neighbors using the modified breakmarriage oper-
ation, and then chooses a matching in the set that has minimum egalitarian or
sex-equal cost, given by Eqs. (1) and (2). Because our algorithm is local search
based, the search can get stuck at a local minimum. We can overcome this issue
by randomly choosing the next matching due to a small value of p.

1: procedure FindNext(M)
2: neighborSet := ∅
3: for m := 1 to n do
4: Mchild := Breaking(M,m)
5: if (Mchild �= NULL) then
6: neighborSet := neighborSet ∪ Mchild

7: end if
8: end for
9: if (small random probability p) then

10: Mnext := a random matching in neighborSet
11: else
12: Mnext := arg minM∈neighborSet(f(M))
13: end if
14: return Mnext

15: end procedure

The notation m in Procedure FindNext(M) means that we perform break-
marriage with respect to man. If the role of man and woman is swapped, a break-
marriage operation with respect to woman is established in the same manner.
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Algorithm 1. Searching algorithm for strongly stable matchings
1: Input: an SMT instance with preference lists A and B.
2: Output: a strongly stable matching.

3: Mleft := ManOptimal(A,B)
4: Mright := WomanOptimal(B,A)
5: if (A strongly stable matching exists) then
6: Mbest := arg minM∈{Mleft,Mright}(f(M))
7: forward := true
8: backward := true
9: loop

10: if (forward) then searching w.r.t man point of view
11: Mnext := FindNext(Mleft)
12: if (f(Mnext) > f(Mleft)) then
13: forward := false
14: if f(Mbest) > f(Mleft) then
15: Mbest := Mleft

16: end if
17: end if
18: Mleft := Mnext

19: end if
20: if (backward) then searching w.r.t woman point of view
21: Mnext := FindNext(Mright)
22: if (f(Mnext) > f(Mright)) then
23: forward := false
24: if f(Mbest) > f(Mright) then
25: Mbest := Mright

26: end if
27: end if
28: Mright := Mnext

29: end if
30: if ((not forward) and (not backward)) then
31: if (sm(Mleft) ≤ sm(Mright)) then
32: forward := true
33: backward := true
34: else
35: break
36: end if
37: end if
38: end loop
39: return Mbest

40: else
41: There is no strongly stable matching.
42: end if

From that observation, we can develop an algorithm consisting of two simulta-
neously local searches. One carries out with respect to man point of view, and
the other is with respect to woman point of view. These two searches not only
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aims to speed up the algorithm but also needs to improve the accuracy solutions
obtained by the algorithm. To this end, it is important to determine appropri-
ately an initial matching as well as the searching direction for each search. The
distributive lattice structure as described in Sect. 2 allows again us to solve this.

Our search is given in Algorithm 1. On the lattice, we performs two searches
in which one starts at a man-optimal strongly stable matching and the other at a
woman-optimal one. The former called forward, by the breakmarriage operation
with respect to man, computes the set of neighbors and then chooses a better
matching due to the optimal cost f(M) (that is the egalitarian or sex-equal cost).
In the meantime, the later called backward does in the same manner, with respect
to woman point of view. Two searches are performed iteratively until a so-call
meeting condition is satisfied. The algorithm, thereby, travels on the lattice due
to the dominance relation. Because of the dominance, man costs of matchings
found during forward searching should be increased, while those during back-
ward searching should be decreased. The meeting condition is defined to be the
moment when the man cost of a matching by forward search is greater than that
by backward one, i.e., sm(Mleft) > sm(Mright). The idea behind of Algorithm 1
was actually introduced in [16], which is called the bi-directional local search.
It, however, defers from which in [16] that the breakmarriage operation here is
modified to adapt to the strongly stability. Furthermore, some computational
aspects of the set of stable marriages in an SMT instance, are also utilized to
improve the performance of the algorithm as described in the next section.

4 Implementation

4.1 Simulation Results

We used the method given in [3] to generate SMT instances. Due to the method,
we take two parameters: the problem’s size n and a probability, say pt, of ties.
Given a 2-tuple 〈n, pt〉, an instance of SMT is generated iteratively as follows:

1. A random preference list of size n for each man and woman is produced.
2. We iterate over each person’s (men and women’s) preference list: for a man

mi and for his choices ci from his second to his last, a random value p such
that 0 ≤ p < 1, is generated; if p ≤ pt then the preference for his cthi choice
is the same as cthi−1 choice.

An instance generated as 〈n, 0.0〉 will be a classical SMP. Table 1 shows an SMT
instance which is randomly generated with 〈8, 0.5〉 (ties are denoted by braces).

The algorithm is implemented in Matlab 2016a and run on the platform
OS X, Core i5 2.5 GHz with 8 GB RAM. We run the algorithm for SMT instances
of different sizes. For each instance, the algorithm is tested for 10 times obtain
the average costs and the probability of ties pt is varied from 0.0 to 1.0 in steps
of 0.01.

We first investigate how the parameter pt influences the egalitarian and sex-
equal costs of an SMT instance. Figure 1 shows the average cost of egalitarian
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Table 1. An SMT instance generated with 〈8, 0.5〉.

Men’s list Women’s list

1: (5 7) (1 2) 6 (8 4) 3 1: 5 3 7 (6 1 2 8) 4

2: 2 (3 7) 5 4 1 8 6 2: 8 6 (3 5 7 2 1 4)

3: (8 5 1) 4 6 2 3 7 3: (1 5 6) (2 4) 8 7 3

4: (3 7 2) 4 1 (6 8 5) 4: 8 (7 3 2) (4 1 5) 6

5: (7 2) 5 1 3 (6 8 4) 5: (6 4 7 3 8) (1 2) 5

6: (1 6) (7 5) 8 (4 2 3) 6: 2 8 (5 4) (6 3) 7 1

7: (2 5) 7 6 3 4 (8 1) 7: (7 5 2) 1 8 (6 4) 3

8: (3 8 4 5) (7 2 6 1) 8: (7 4 1) 5 2 3 6 8

and sex-equal matchings found by the algorithm for 〈100, pt〉, varying pt. The
trend of egalitarian costs is decreased as pt increases. This is because of the
definition of egalitarian cost, i.e. sm(M) + sw(M) (see Eq. (1)), for a given
matching M . When pt increases, there are more people which are indifferent in
preference lists. Therefore, the values of sm(M) and sw(M) should be decreased.
For the sex-equal cost, by (2), it is defined to be |sm(M) − sw(M)|. The figure
shows that the probability of the cost that is closer to zero, is high as higher
value of pt. These observations on the behaviors of egalitarian and sex-equal
costs, when varying pt, thus also indicate the correctness of the algorithm.

In Figs. 2 and 3, we show the results of testing for datasets of large size.
We report here the average execution time of the algorithm which runs for five
instance sizes n = 50, 100, 200, 300, 500, varying pt in steps of 0.01. The running
times for finding egalitarian and sex-equal matchings are quite similar for each
instance size. It also seems that the variability of running times is higher as
pt increases. This can be caused by increasing the number of ties in preference
lists. Then, the number of strongly stable matchings can also be increased. The
searching space should be larger and thus the necessary time for searching might
sometimes be increased. On the other hand, a high people number of ties can
also help to quickly obtain solutions, since the stop condition of the algorithm
can be quickly reached. Finally, we would also like to show here the performance
of the algorithm for large datasets. For n ≤ 300, the running time mostly is not
exceeded 5 (s) for both egalitarian and sex-equal costs. For largest size of 500,
the times in worse cases mostly are about 30 (s) and 35 (s) for egalitarian and
sex-equal costs, respectively. Such execution times indicate the significance of
our algorithm.

4.2 Algorithm Acceleration

Procedures ManOptimal(A,B) and WomanOptimal(B,A) in Algorithm 1
can be given by STRONG given in [6] which is an extension of Gale and Shapley’s
algorithm.
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Fig. 2. The average execution time of finding egalitarian matchings for 〈n, pt〉.
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Fig. 3. The average execution time of finding sex-equal matchings for 〈n, pt〉.

In Algorithm 1, For each iteration of finding a next matching (Procedure
FindNext(M)), the algorithm performs a number of breakmarriage operations
(Procedure Breaking(M,m)). This number should be very large as the size of
instances increases. Consequently, the computational cost of the breakmarriage
operation is high. It is possible to reduce the cost by using a so-called shortlist.
The concept of shortlists for a given SMP instance was given in [7]. In particular,
if a woman w accepts a proposal from a man m, then the woman never accepts a
proposal from a man following m in her preference list. Then, all men following
m should be removed from the list. We also remove w from preference lists of
the men. It was known that if w (m, respectively) is absent in the shortlist of a
man m (w, respectively), (m,w) is not a stable pair. Thereby, in the sequence of
proposals of a breakmarriage operation, before proposing to a person of opposite
sex, he/she checks if the person is in his/her shortlist. If the person is absent
in the list, the pair of them is not stable. Therefore, we can ignore the stability
checking for the pair.

In the case of ties, for a given SMT instance, shortlists with respect to man
point of view can be obtained during performing Procedure ManOptimal(A,B)
as follows. When a woman w accepts the proposal from a man m:

1. remove all men whose strictly worse preference than m from the preference
list of w,

2. remove also w from the preference lists of those men.
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Let us denote by Xm and Y m such shortlists (i.e. obtained with respect to man
point of view). From woman point of view, similar shortlists can be obtained
in the same manner, denoted by Xw and Y w. We now define shortlists for the
instance, denoted by X and Y ,

X = Xm ∧ Xw and Y = Y m ∧ Y w,

where the operator ∧ is defined by X(mi, wj) = Xm(mi, wj) if Xm(mi, wj) =
Xw(mi, wj), otherwise X(mi, wj) = 0 (meaning that wj is absent from mi’s
preference list). It is similar to Y . Using shortlists, we now improve the Proce-
dure FindNext(M) to FindNext(X,Y,M), where the breakmarriage takes X
and Y as parameters to reduce the number of stability checking operations for
pairs of a man and woman.

1: procedure FindNext(X,Y,M)
2: neighborSet := ∅
3: for m := 1 to n do
4: Mchild := Breaking(X,Y,M,m)
5: if (Mchild �= NULL) then
6: neighborSet := neighborSet ∪ Mchild

7: end if
8: end for
9: if (small random probability p) then

10: Mnext := a random matching in neighborSet
11: else
12: Mnext := arg minM∈neighborSet(f(M))
13: end if
14: return Mnext

15: end procedure

5 Conclusion

The paper presented a searching for strongly egalitarian and sex-equal matchings
of SMT instances. The algorithm performs two simultaneous local searches on
the distributive lattice structure of strongly stable matchings in SMT instances
to find optimal solutions. By dominance relation in the lattice, the algorithm
terminates when the man costs of two searches “meet” each other. The simulation
results obtained on large datasets show that the algorithm can find solutions in
a reasonable time. In order to speed up the searching, a use of shortlist concept
also was presented, which helps to reduce the number of checking pairs in the
breakmarriage operation. It however has not implemented yet in this paper. This
is performed in a general locally searching scheme in which we aims to develop
for several variants of SMP.
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